Sie sind hier: Startseite » Markt » Tipps und Hinweise

Unternehmen brauchen eine solide Datenkultur


Schlüsselrolle von Daten und wie Unternehmen sie besser nutzen können
Datenanalyse – Die Einstellung macht den Unterschied


Peter Stadler, Acting VP Central Europe bei Teradata

Vom Einkauf über die interne Logistik bis hin zum Marketing oder in der Produktion – alle Geschäftsbereiche stehen vor der großen Herausforderung, immer größere komplexe Datenmengen zu sammeln und diese auf sinnvolle Weise zu verwerten. Datenanalyse wird in den Köpfen vieler CIOs so zur aufwendigen Investition, deren Früchte man erst spät ernten kann. Dabei verkennen viele Unternehmen, dass Daten ihnen nicht nur helfen können, Prozesse signifikant zu vereinfachen und gewinnbringender zu arbeiten, sondern auch ihre Kunden besser zu verstehen – ein Faktor, der nie so erfolgsentscheidend war wie heute.

Peter Stadler, Acting VP Central Europe bei Teradata, ist überzeugt, dass die Fähigkeit, Daten für Unternehmensentscheidungen auszuwerten, ein Schlüssel zum Erfolg von deutschen und österreichischen Unternehmen ist. Im Folgenden erklärt er, wie Unternehmen beginnen können, echten Mehrwert aus ihren Daten zu schöpfen, um auch in Zukunft zu bestehen:

Unwissenheit ist die Wurzel des Problems
Noch immer sind sich viele Unternehmen nicht darüber bewusst, welche Möglichkeiten ihnen eine zielführende Datenanalyse bieten kann. Jedes Mal, wenn ein unpassender Rabattgutschein in einem Paket mitgeliefert wird oder Menschen, die kein Auto besitzen, Online-Anzeigen für Kfz-Versicherungen sehen, ist eine Chance verstrichen, ein Geschäft zu machen. Oft sind es unzureichende Analysen, die diese fehlplatzierten Werbeaktionen verursachen.

Doch das Potenzial der Datenanalyse geht weit über das Marketing hinaus. Ein gutes und sehr einfach verständliches Beispiel ist ein Becher Joghurt im Supermarkt. Wird dieser Becher nicht verkauft, muss er entsorgt werden und der Supermarkt macht einen Verlust. Doch vielleicht ist genau dieser Joghurt in einem anderen Stadtteil sehr gefragt oder sogar ausverkauft. In diesem Fall fährt die Supermarktkette einen doppelten Verlust ein, da sie einerseits ein Produkt nicht verkaufen konnte und in einem anderen Markt die Chance auf einen Verkauf verpasst hat. Mithilfe moderner Datenanalyse kann genau nachvollzogen werden, wie der Verkauf bestimmter Produkte in den einzelnen Märkten verläuft. Der in Markt A verschmähte Joghurt kann also früh genug in Markt B umgelagert werden – und das Sortiment der beiden Märkte in Zukunft besser an das Publikum angepasst werden.

Verständnis über Kunden wird zum Schlüssel für Erfolg
Ein viel größerer Faux-Pas ist es aber, die Möglichkeiten gar nicht zu kennen, die Datenanalysen bieten. Wenn wir etwa noch einmal auf unser Beispiel des Supermarktes zurückgehen, ist eine zentrale Frage, die sich alle Entscheider im stationären Handel stellen sollten: "Wer ist wann und warum in meinem Laden?" Nur wer diese Frage beantworten kann, hat die Möglichkeit, wirklich auf seine Kunden einzugehen und sie auf lange Sicht auch zu halten.

Internationale Player wie Amazon haben die Wichtigkeit dieser Daten schnell erkannt und entsprechend gehandelt. Nur deshalb konnten sie die Position auf dem Weltmarkt erlangen, die sie heute innehaben. Auch für Unternehmen im Einzelhandel gilt diese Devise: Wer gegen seine Konkurrenten bestehen will, muss sich mit einer klaren Markenposition und Botschaft auf dem Markt platzieren. Der Kunde muss klar verstehen, wer er ist und wofür er steht. Doch dazu muss das Unternehmen den Kunden erst einmal verstehen.
All das funktioniert nur auf einer Grundlage von soliden Daten und exakten Analysen. Dabei geht es längst nicht mehr um die Einteilung der Kunden in eine bestimmte Anzahl von Kundensegmenten, die unterschiedlich bedient werden. Vielmehr ist eine echte Personalisierung das Ziel, sodass jeder Kunde mit seinen Bedürfnissen ein eigenes Segment bildet und ganz individuell angesprochen werden kann.

Einen Einstieg finden – mit kleinen, klar umrissenen Projekten
Doch wie kommt man an diesen Punkt? Zuallererst brauchen Unternehmen eine solide Datenkultur. Das Bewusstsein für die Wichtigkeit von strategischer Datenanalyse muss im gesamten Unternehmen vorhanden sein – angeführt von der obersten Führungsebene. Nur dann ist der Wandel zu einem datengetriebenen Unternehmen von Erfolg gekrönt.

Das heißt aber nicht, dass ein Unternehmen in einem Herkulesakt alle Geschäftsprozesse binnen kürzester Zeit umstellen muss. Ein guter Anfang ist ein abgegrenztes Projekt mit klaren Zielen und KPIs. So können Unternehmen Einblicke gewinnen, welche Analysen ihnen am meisten Mehrwert bringen und welche Bereiche wichtig sind, um weitere Analysemodelle einzuführen.

Im Einzelhandel bietet sich zum Beispiel ein sorgfältiges Monitoring und Analysieren der Supply Chain an, um Engpässe im Sortiment bei einzelnen Märkten einerseits und Müll durch überflüssige Produkte andererseits zu vermeiden. Gerade in den vergangenen Monaten haben wir deutlich gesehen, wie ungewohnte Situationen wie ein pandemiebedingter Lockdown altbewährte Systeme auf den Kopf gestellt und Versorgungsprobleme mit sich gebracht haben. Datenanalyse kann hier helfen, schnell einen Überblick über die Situation in einzelnen Filialen zu erhalten und gegenzusteuern.

Perfektion ist nicht die Lösung
Analysemodelle sind komplex – oder nicht wirksam. Das ist ein Irrglaube, der viele Unternehmen davor zurückschrecken lässt, mehr auf Datenanalyse zu setzen. Doch mit diesem Argument machen es sich Zweifler allzu leicht. Kein Modell der Datenanalyse ist je perfekt. Und das muss es auch nicht sein. Modelle sind Hilfen und Annäherungen, die Entwicklungen und Trends anzeigen.

Wollte man die Realität 100prozentig in einem Modell abbilden, so würde es in der Tat viel zu viele Variable enthalten müssen und dadurch impraktikabel werden. Die Lösung ist die 80/20-Regel: 80 Prozent der Erfolge beruhen auf 20 Prozent des Einsatzes. Wer Datenanalyse-Projekte also strategisch angeht und im Vorfeld klärt, welche 20 Prozent entscheidend sind, um das Geschäft einen entscheidenden Schritt weiterzubringen, kann ein effizientes Modell erstellen, das sich auf die wichtigsten Parameter konzentriert. Auch ein unperfektes Modell kann schon einen großen Mehrwert bieten, wenn es die Mehrheit der Bedürfnisse abdeckt und dem Zweck dient.

Fazit
Auch wenn die Herausforderung für viele deutsche und österreichische Unternehmen noch groß ist – wer den ersten Schritt macht und zielgerichtete und effiziente Datenanalyse einführt, kann Entscheidungen auf einer soliden Grundlage treffen. Das steigert nicht nur die Qualität der eigenen Arbeit, sondern bringt Unternehmen auch einen entscheidenden Wettbewerbsvorteil. Die wichtigste Veränderung, die Unternehmen dafür vollziehen müssen, ist die Einstellung, Daten als entscheidendes und wertvolles Asset zu verstehen, deren Analyse entscheidend für ihr zukünftiges Bestehen sein kann.
(Teradata: ra)

eingetragen: 21.12.20
Newsletterlauf: 16.03.21

Teradata: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Wie sich Teamarbeit im KI-Zeitalter verändert

    Liefertermine wackeln, Teams arbeiten unter Dauerlast, Know-how verschwindet in der Rente: In vielen Industrieunternehmen gehört der Ausnahmezustand zum Betriebsalltag. Gleichzeitig soll die Zusammenarbeit in Produktion, Qualitätskontrolle und Wartung immer schneller, präziser und vernetzter werden. Wie das KI-gestützt gelingen kann, zeigt der Softwarehersteller Augmentir an sechs konkreten Praxisbeispielen.

  • Vom Workaround zum Schatten-Account

    Um Aufgaben im Arbeitsalltag schneller und effektiver zu erfüllen, ist die Suche nach Abkürzungen Gang und Gebe. In Kombination mit dem technologischen Fortschritt erreicht die Effizienz menschlicher Arbeit so immer neue Höhen und das bringt Unternehmen unwissentlich in eine Zwickmühle: Die zwischen Sicherheit und Produktivität. Wenn ein Mitarbeiter einen Weg findet, seine Arbeit schneller oder besser zu erledigen, die Bearbeitung von Zugriffsanfragen durch die IT-Abteilung aber zu lange dauert oder zu kompliziert ist, dann finden Mitarbeiter oftmals "kreative" Lösungen, um trotzdem weiterarbeiten zu können. Diese "Workarounds" entstehen selten aus böser Absicht. Allerdings stellen sie gravierende Sicherheitslücken dar, denen sich viele Beschäftigte und Führungskräfte nicht bewusst sind.

  • KI in der Cloud sicher nutzen

    Keine Technologie hat die menschliche Arbeit so schnell und weitreichend verändert wie Künstliche Intelligenz. Dabei gibt es bei der Integration in Unternehmensprozesse derzeit keine Tür, die man KI-basierter Technologie nicht aufhält. Mit einer wachsenden Anzahl von KI-Agenten, LLMs und KI-basierter Software gibt es für jedes Problem einen Anwendungsfall. Die Cloud ist mit ihrer immensen Rechenleistung und Skalierbarkeit ein Motor dieser Veränderung und Grundlage für die KI-Bereitstellung.

  • Clever skalieren auf Basis bestehender Strukturen

    Da Generative AI zunehmend Teil unseres Alltags wird, befinden wir uns in einer KI-Phase, die sich durch außerordentliche Fähigkeiten und enormen Konsum auszeichnet. Was anfangs auf einer theoretischen Ebene stattgefunden hat, ist inzwischen messbar - und zwar bis zur kleinsten Einheit. Aktuelle Untersuchungen von Mistral AI und Google deuten darauf hin, dass die Folgen einer einzigen Interaktion vernachlässigbar sind: Bruchteile eines Watts, einige Tropfen Wasser und ein Kohlenstoffausstoß, der etwa dem entspricht, was beim Streamen eines Videos unter einer Minute verbraucht wird.

  • Von Cloud-First zu Cloud-Smart

    Die zunehmende Vernetzung von IT- und OT-Systemen bedeutet für die Fertigungsindustrie neue Sicherheitsrisiken. Ein moderner Cloud-Smart-Ansatz verbindet Innovation mit effektiven Sicherheitslösungen, um diesen Herausforderungen gerecht zu werden. Die industrielle Digitalisierung stellt die Fertigungsindustrie heute vor neue Herausforderungen - insbesondere in puncto Sicherheit.

  • Technik statt Vertrauen

    Die andauernden Turbulenzen in den USA seit Amtsantritt von Donald Trump, die konsequente Kürzung von Mitteln für Datenschutz und die Kontrolle staatlicher Überwachungsprogramme verdeutlichen: Wer als Behörde oder Institution höchste Datensicherheit garantieren muss, kann nicht auf US-amerikanische Unternehmen oder deren europäische Töchter setzen.

  • Risiko von SaaS-zu-SaaS-Integrationen

    Ein SaaS-Sicherheitsalbtraum für IT-Manager in aller Welt wurde kürzlich wahr: Hacker nutzten legitime OAuth-Tokens aus der Drift-Chatbot-Integration von Salesloft mit Salesforce, um unbemerkt Kundendaten von der beliebten CRM-Plattform zu exfiltrieren. Der ausgeklügelte Angriff deckt einen kritischen toten Winkel auf, von dem die meisten Sicherheits-Teams nicht einmal wissen, dass sie von ihm betroffen sind.

  • Kostenfallen erkennen und vermeiden

    Remote Work, Cloud Computing und mobile Endgeräte haben die Arbeitswelt grundlegend verändert. Mitarbeiter erwarten heute, von überall aus auf ihre Anwendungen und Daten zugreifen zu können. Virtuelle Desktop-Lösungen machen diese Flexibilität möglich, indem sie Desktop-Umgebungen und Anwendungen über das Netzwerk eines Unternehmens bereitstellen. Doch der Markt für solche Lösungen ist komplex und vielfältig. IT-Entscheider stehen vor der Herausforderung, aus dem Angebot die passende Lösung zu identifizieren, die sowohl technische Anforderungen als auch wirtschaftliche Ziele erfüllt.

  • Übergang in die neue Systemlandschaft

    Der Umstieg auf SAP S/4HANA ist bei vielen Unternehmen bereits in vollem Gange oder steht unmittelbar bevor. Wer in diesem Zusammenhang seine Archivierungsstrategie überdenkt, kann wertvolle Zeit, Kosten und Aufwand sparen. Die Archivierungsexperten von kgs haben zehn zentrale Aspekte zusammengestellt, die dabei helfen, den Übergang in die neue Systemlandschaft effizient und zukunftssicher zu gestalten.

  • Die Zukunft braucht offene KI-Infrastrukturen

    KI ist mehr als ein ominöses Hinterzimmer-Experiment. Die Technologie ist eine treibende Kraft, wenn es um Produkte, Entscheidungen und Nutzererfahrungen über jegliche Wirtschaftsbereiche hinaus geht. Mittlerweile stellen Unternehmen jedoch die Inferenz in den Mittelpunkt ihrer KI-Implementierungen. Hier können die Modelle ihren eigentlichen Mehrwert unter Beweis stellen - unter anderem in Form von Antworten auf drängende Fragen, Vorhersagen und Content-Generierung. Der Anstieg des Inferenz-Bedarfs bringt jedoch eine entscheidende Herausforderung mit sich. Bei Inferenzen handelt es sich nämlich nicht um einzelne Workloads.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen