Sie sind hier: Startseite » Markt » Tipps und Hinweise

Das Beste aus der KI-Investition machen


Autonomous Computing: Vier Wegweiser zur selbststeuernden Datenverarbeitung
Wie eine Cloud-Infrastruktur mit autonomer Technologie die Business Resilience von Unternehmen unterstützt


Die COVID-19-Pandemie hat das Tagesgeschäft in vielen Branchen so unvermittelt auf den Kopf gestellt, dass den Führungskräften vielerorts eine Entscheidungshilfe für den Übergang in die Post-Corona-Zeit fehlt. Einen Lösungsansatz bietet die autonome Datenverarbeitung. Sie bezeichnet die Fähigkeit eines Computers, sich selbst automatisch durch adaptive Technologien zu verwalten. Oracle präsentiert einen Ausblick, welche Potenziale für Unternehmen und ihre strategischen Entscheider darin liegen und wie dieses neue Konzept aussehen wird.

Die KI-basierte Modellierung verschiedener Szenarien wird im Zuge der COVID-19-Pandemie zu einem immer wichtigeren Werkzeug für Führungskräfte, die Unterstützung bei strategischen Entscheidungen benötigen. Führungskräfte aller Bereiche im Unternehmen sind gut beraten, sich vor diesem Hintergrund die wichtigsten Interessengruppen anzusehen und Risiken zu identifizieren. Auf dieser Basis lassen sich Modelle für den Worst Case und die nach Wahrscheinlichkeit gewichteten Ergebnisse der Geschäftsentscheidungen erstellen.

Um entsprechende Prozesse zu entwickeln und erfolgreich im Unternehmen zu verankern, helfen folgende Wegweiser:

Noch nie dagewesene Datenmengen können sich für Unternehmen ohne die richtige Unterstützung als Fluch und Segen zugleich erweisen. Denn sie bergen wertvolle Informationen, um sich Geschäftsvorteile verschaffen zu können. Allerdings drohen sie auch mit ihrer schieren Masse die zuständigen Führungskräfte zu überfordern: Datenerfassung, -bereinigung und -sicherheit können das Management von der Vorhersage und Strategieentwicklung abbringen. Und ohne gezielte Unterstützung können sie nicht mit der erforderlichen Geschwindigkeit arbeiten.

Um eine Lösung herbeizuführen, sollten die Verantwortlichen überlegen, was sie mithilfe von KI rationalisieren und automatisieren können. KI-Lösungen können riesige Datenmengen in kurzer Zeit analysieren und interpretieren, was sie für die Planung von Szenarien unschätzbar wertvoll macht. Zudem bieten sie die Option, die vielen sich wiederholenden, aber notwendigen Aufgaben auf dem Gebiet der Datenverwaltung zu automatisieren. Dabei erweist es sich jedoch als sinnvoll, realistisch zu sein und die Erwartungen nicht zu hoch zu schrauben. Unternehmen haben oft Schwierigkeiten, die Technologie in großem Maßstab einzusetzen. Das Letzte, was Geschäftsführer jetzt wollen, ist ein kostspieliger und ehrgeiziger Schnellschuss, der ihre Ziele verfehlt.

Entwicklerkompetenz stärken und sinnvoll nutzen
Um das Optimum aus der KI-Investition herauszuholen, sollten Unternehmen Anwendungen sowohl kaufen als auch selbst konzipieren. Dabei muss nicht alles von Grund auf neuentwickelt werden, denn das birgt nicht zuletzt die Gefahr von Kompatibilitätsproblemen. Benötigt wird vielmehr ein strategischer Ansatz, der zusammenhängende Lösungen liefert und den Nutzen der KI maximiert, anstatt einer Reihe unterschiedlicher Lösungen.

Fokus auf die Datenqualität legen
Besondere Aufmerksamkeit sollte auch der Qualität der Daten gewidmet werden. Das Datenmaterial muss vollständig, bereinigt und aktuell sein, damit eine KI-Lösung genaue Erkenntnisse liefern kann. Hier erweist es sich als hilfreich, dass ebenfalls KI-gesteuerte Data Engines Datensätze bereinigen und anreichern könne und sie so für die Analyse aufbereiten. Ein Beispiel dafür ist das Unternehmen Las Vegas Valley Water District, das die 400.000 Wassermessgeräte ihrer Kunden zur Auswertung des zukünftigen Bedarfs über eine KI analysiert.

Auf kosteneffizientes Feintuning setzen
Ein weiterer wichtiger Gesichtspunkt ist das Tuning der Lösung. Normalerweise nehmen Data Scientists die "Wartung" der KI vor – ein kostspieliger, manueller Prozess. In Organisationen mit Hunderten von KI-Modellen, die gewartet werden müssen, ist dies aber kaum praktikabel. Ein aussichtsreicher Lösungsansatz: Die Anwendung von maschinellem Lernen auf diesen Prozess automatisiert diese teure Aufgabe und hält die Kosten unter Kontrolle.

"Es gibt nicht den einen Königsweg, um nach einem Einschnitt in den Geschäftsablauf wieder zur Normalität zurückzukehren. Szenariomodellierung und Autonomous Computing mithilfe von leistungsfähigen KI- und ML-Modellen können Unternehmen jedoch helfen, den Sturm zu überstehen", erklärt Gerhard Schlabschi, Director Technology & Cloud Computing bei Oracle. "Durch systematische Kombination detaillierter, umfassender KI-Modelle mit menschlichem Urteilsvermögen, werden Unternehmen in die Lage versetzt, die richtigen Entscheidungen treffen, um sich einen Weg durch die Krise zu bahnen." (Oracle: ra)

eingetragen: 10.09.20
Newsletterlauf: 03.11.20

Oracle: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Wie sich Teamarbeit im KI-Zeitalter verändert

    Liefertermine wackeln, Teams arbeiten unter Dauerlast, Know-how verschwindet in der Rente: In vielen Industrieunternehmen gehört der Ausnahmezustand zum Betriebsalltag. Gleichzeitig soll die Zusammenarbeit in Produktion, Qualitätskontrolle und Wartung immer schneller, präziser und vernetzter werden. Wie das KI-gestützt gelingen kann, zeigt der Softwarehersteller Augmentir an sechs konkreten Praxisbeispielen.

  • Vom Workaround zum Schatten-Account

    Um Aufgaben im Arbeitsalltag schneller und effektiver zu erfüllen, ist die Suche nach Abkürzungen Gang und Gebe. In Kombination mit dem technologischen Fortschritt erreicht die Effizienz menschlicher Arbeit so immer neue Höhen und das bringt Unternehmen unwissentlich in eine Zwickmühle: Die zwischen Sicherheit und Produktivität. Wenn ein Mitarbeiter einen Weg findet, seine Arbeit schneller oder besser zu erledigen, die Bearbeitung von Zugriffsanfragen durch die IT-Abteilung aber zu lange dauert oder zu kompliziert ist, dann finden Mitarbeiter oftmals "kreative" Lösungen, um trotzdem weiterarbeiten zu können. Diese "Workarounds" entstehen selten aus böser Absicht. Allerdings stellen sie gravierende Sicherheitslücken dar, denen sich viele Beschäftigte und Führungskräfte nicht bewusst sind.

  • KI in der Cloud sicher nutzen

    Keine Technologie hat die menschliche Arbeit so schnell und weitreichend verändert wie Künstliche Intelligenz. Dabei gibt es bei der Integration in Unternehmensprozesse derzeit keine Tür, die man KI-basierter Technologie nicht aufhält. Mit einer wachsenden Anzahl von KI-Agenten, LLMs und KI-basierter Software gibt es für jedes Problem einen Anwendungsfall. Die Cloud ist mit ihrer immensen Rechenleistung und Skalierbarkeit ein Motor dieser Veränderung und Grundlage für die KI-Bereitstellung.

  • Clever skalieren auf Basis bestehender Strukturen

    Da Generative AI zunehmend Teil unseres Alltags wird, befinden wir uns in einer KI-Phase, die sich durch außerordentliche Fähigkeiten und enormen Konsum auszeichnet. Was anfangs auf einer theoretischen Ebene stattgefunden hat, ist inzwischen messbar - und zwar bis zur kleinsten Einheit. Aktuelle Untersuchungen von Mistral AI und Google deuten darauf hin, dass die Folgen einer einzigen Interaktion vernachlässigbar sind: Bruchteile eines Watts, einige Tropfen Wasser und ein Kohlenstoffausstoß, der etwa dem entspricht, was beim Streamen eines Videos unter einer Minute verbraucht wird.

  • Von Cloud-First zu Cloud-Smart

    Die zunehmende Vernetzung von IT- und OT-Systemen bedeutet für die Fertigungsindustrie neue Sicherheitsrisiken. Ein moderner Cloud-Smart-Ansatz verbindet Innovation mit effektiven Sicherheitslösungen, um diesen Herausforderungen gerecht zu werden. Die industrielle Digitalisierung stellt die Fertigungsindustrie heute vor neue Herausforderungen - insbesondere in puncto Sicherheit.

  • Technik statt Vertrauen

    Die andauernden Turbulenzen in den USA seit Amtsantritt von Donald Trump, die konsequente Kürzung von Mitteln für Datenschutz und die Kontrolle staatlicher Überwachungsprogramme verdeutlichen: Wer als Behörde oder Institution höchste Datensicherheit garantieren muss, kann nicht auf US-amerikanische Unternehmen oder deren europäische Töchter setzen.

  • Risiko von SaaS-zu-SaaS-Integrationen

    Ein SaaS-Sicherheitsalbtraum für IT-Manager in aller Welt wurde kürzlich wahr: Hacker nutzten legitime OAuth-Tokens aus der Drift-Chatbot-Integration von Salesloft mit Salesforce, um unbemerkt Kundendaten von der beliebten CRM-Plattform zu exfiltrieren. Der ausgeklügelte Angriff deckt einen kritischen toten Winkel auf, von dem die meisten Sicherheits-Teams nicht einmal wissen, dass sie von ihm betroffen sind.

  • Kostenfallen erkennen und vermeiden

    Remote Work, Cloud Computing und mobile Endgeräte haben die Arbeitswelt grundlegend verändert. Mitarbeiter erwarten heute, von überall aus auf ihre Anwendungen und Daten zugreifen zu können. Virtuelle Desktop-Lösungen machen diese Flexibilität möglich, indem sie Desktop-Umgebungen und Anwendungen über das Netzwerk eines Unternehmens bereitstellen. Doch der Markt für solche Lösungen ist komplex und vielfältig. IT-Entscheider stehen vor der Herausforderung, aus dem Angebot die passende Lösung zu identifizieren, die sowohl technische Anforderungen als auch wirtschaftliche Ziele erfüllt.

  • Übergang in die neue Systemlandschaft

    Der Umstieg auf SAP S/4HANA ist bei vielen Unternehmen bereits in vollem Gange oder steht unmittelbar bevor. Wer in diesem Zusammenhang seine Archivierungsstrategie überdenkt, kann wertvolle Zeit, Kosten und Aufwand sparen. Die Archivierungsexperten von kgs haben zehn zentrale Aspekte zusammengestellt, die dabei helfen, den Übergang in die neue Systemlandschaft effizient und zukunftssicher zu gestalten.

  • Die Zukunft braucht offene KI-Infrastrukturen

    KI ist mehr als ein ominöses Hinterzimmer-Experiment. Die Technologie ist eine treibende Kraft, wenn es um Produkte, Entscheidungen und Nutzererfahrungen über jegliche Wirtschaftsbereiche hinaus geht. Mittlerweile stellen Unternehmen jedoch die Inferenz in den Mittelpunkt ihrer KI-Implementierungen. Hier können die Modelle ihren eigentlichen Mehrwert unter Beweis stellen - unter anderem in Form von Antworten auf drängende Fragen, Vorhersagen und Content-Generierung. Der Anstieg des Inferenz-Bedarfs bringt jedoch eine entscheidende Herausforderung mit sich. Bei Inferenzen handelt es sich nämlich nicht um einzelne Workloads.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen