Sie sind hier: Startseite » Markt » Tipps und Hinweise

Cloud-native Anwendungen so effizient wie möglich


Fünf Tipps für einen herrlich langweiligen Betrieb von Cloud-Anwendungen
Das Versprechen der Cloud-nativen Entwicklung ist es, neue Features schneller in Produktion zu bringen als zuvor


Nach dem Deployment einer Applikation in der Cloud und deren Live-Gang beginnt die dritte Phase ihres Lebenszyklus: der Regelbetrieb. Je langweiliger er vonstatten geht, desto besser. Doch bis alles reibungslos läuft, haben Entwickler wie Admins noch einiges zu tun. IT-Dienstleister Consol nennt fünf essentielle Aufgaben für den sogenannten "Day after".

Wenn DevOps-Teams von "Day 0", "Day 1” und "Day 2" sprechen, geht es weniger um die genaue Zeiteinteilung als vielmehr um die chronologische Abfolge. Mit Day 0 ist das Deployment einer Cloud-Anwendung gemeint, Day 1 markiert deren Live-Gang und am Day 2 beginnt der Regelbetrieb. Während die ersten beiden Phasen eines Cloud-Projekts häufig sehr stressig sind, wünschen sich Entwickler und Admins für den Betrieb der Cloud-Anwendung möglichst Langeweile. Wie sie diesen Zustand erreichen, erklärt IT-Dienstleister Consol – und gibt einen Ausblick, worauf sich DevOps-Teams am Day 3 einstellen müssen.

1. Automatisierung ist das A und O
Das Versprechen der Cloud-nativen Entwicklung ist es, neue Features schneller in Produktion zu bringen als zuvor. Das funktioniert allerdings nur, wenn nicht bei jedem Update ein Plattform-Team die Deployments manuell durchführen muss. Automatisierung ist daher essentiell, um die Vorteile der Cloud maximal zu nutzen. Fortschrittliche DevOps-Teams setzen dafür in der Regel auf Continuous-Integration- und Continuous-Deployment (CI/CD)-Pipelines. Das sind feste Prozesse, die vollständig in Code gegossen sind und die bei Code-Änderungen automatisch ablaufen.

2. Observability verbessert die Fehlerprävention
Wissen ist Macht – das gilt auch für die Fehlersuche in IT-Systemen. Leider verhindern auch gute Review-Prozesse und automatisierte Tests in CI/CD-Pipelines nicht sämtliche Fehler. Daher benötigen DevOps-Teams Observability, die ihnen Informationen aus drei Quellen bereitstellt: Metriken, Logs und Traces. Metriken liefern den Experten Kennzahlen, um Probleme schnell zu erkennen. Logs erlauben ihnen zu sehen, was genau in einer Applikation vor sich geht. Und Traces unterstützen sie schließlich dabei, Aufrufe und eben auch Fehler zwischen verteilten Systemen nachzuvollziehen. Die Korrelation der Daten bringt einen enormen Mehrwert gegenüber dem reinen Monitoring, bei dem DevOps-Teams ihre Systeme nur dahingehend überwachen, ob sie einwandfrei laufen.

3. Optimierung ist vor allem eine Frage der Architektur
Um Cloud-native Anwendungen so effizient wie möglich zu gestalten, setzen die meisten Entwickler auf eine Microservices-Architektur. Die Aufteilung in kleinere überschaubare Services, die untereinander kommunizieren, erleichtert deren Wartung und Weiterentwicklung. Zudem müssen DevOps-Teams nicht das gesamte System anfassen, nur um einzelne Teile einer Anwendung zu ändern. Setzen sie zudem auf automatisierte CI/CD-Pipelines, können Entwickler und Admins sehr schnell auf sich ändernde Anforderungen reagieren. Microservices-Architekturen sorgen zudem dafür, dass sie einzelne Anwendungsteile unabhängig voneinander skalieren können.

4. Sicherheit setzt sich aus vielen Faktoren zusammen
Das Thema Sicherheit lässt sich nicht pauschalisieren. Das komplexe Feld umfasst unter anderem das passende Training für Entwickler und Administratoren sowie das Live-Monitoring der Aktivitäten in und um die eigentliche Anwendung herum. Ein gerade für das Cloud-native Umfeld sehr wichtiges Sicherheits-Asset ist IaC, also Infrastructure as Code. Bei dieser Methode ist nicht nur die Applikation selbst, sondern auch die gesamte Konfiguration einer IT-Infrastruktur als Code definiert. Dadurch können DevOps-Teams zu jedem Zeitpunkt den Zustand des Systems prüfen und verifizieren, sodass sich Sicherheitslücken seltener einschleichen. Auch die Möglichkeit, den Code vor dem Deployment zu prüfen, senkt das Sicherheitsrisiko.

5. Die Zukunft gehört der KI
Ist alles optimiert, sicher und läuft reibungslos – ist der Betrieb also "langweilig" – schlägt die Stunde der künstlichen Intelligenz: Mit ihr ist es möglich, die Automatisierung anhand von Algorithmen und Machine-Learning-Verfahren noch weiter voranzutreiben, sodass DevOps-Teams immer weniger Aufgaben tatsächlich manuell erledigen müssen. In Bezug auf den automatisierten Betrieb, Optimierung und Überwachung von IT-Infrastrukturen und Cloud-nativer Anwendungen hat das Verfahren bereits einen Namen: AIOps.

"Mit dem erfolgreichen Deployment und dem Live-Gang einer Cloud-nativen Anwendung ist die Arbeit für DevOps-Teams noch nicht vorbei – im Gegenteil: Sie hat gerade erst begonnen", betont Lukas Höfer, Cloud Solutions Architect bei Consol. "Jetzt ist es an Entwicklern und Administratoren, den reibungslosen Betrieb der Anwendung sicherzustellen und deren Effizienz zu steigern. So schaffen sie ein Fundament für den Day 3, also die Implementierung weiterführender Technologien." (Consol: ra)

eingetragen: 07.11.22
Newsletterlauf: 27.01.23

Consol: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Wie sich Teamarbeit im KI-Zeitalter verändert

    Liefertermine wackeln, Teams arbeiten unter Dauerlast, Know-how verschwindet in der Rente: In vielen Industrieunternehmen gehört der Ausnahmezustand zum Betriebsalltag. Gleichzeitig soll die Zusammenarbeit in Produktion, Qualitätskontrolle und Wartung immer schneller, präziser und vernetzter werden. Wie das KI-gestützt gelingen kann, zeigt der Softwarehersteller Augmentir an sechs konkreten Praxisbeispielen.

  • Vom Workaround zum Schatten-Account

    Um Aufgaben im Arbeitsalltag schneller und effektiver zu erfüllen, ist die Suche nach Abkürzungen Gang und Gebe. In Kombination mit dem technologischen Fortschritt erreicht die Effizienz menschlicher Arbeit so immer neue Höhen und das bringt Unternehmen unwissentlich in eine Zwickmühle: Die zwischen Sicherheit und Produktivität. Wenn ein Mitarbeiter einen Weg findet, seine Arbeit schneller oder besser zu erledigen, die Bearbeitung von Zugriffsanfragen durch die IT-Abteilung aber zu lange dauert oder zu kompliziert ist, dann finden Mitarbeiter oftmals "kreative" Lösungen, um trotzdem weiterarbeiten zu können. Diese "Workarounds" entstehen selten aus böser Absicht. Allerdings stellen sie gravierende Sicherheitslücken dar, denen sich viele Beschäftigte und Führungskräfte nicht bewusst sind.

  • KI in der Cloud sicher nutzen

    Keine Technologie hat die menschliche Arbeit so schnell und weitreichend verändert wie Künstliche Intelligenz. Dabei gibt es bei der Integration in Unternehmensprozesse derzeit keine Tür, die man KI-basierter Technologie nicht aufhält. Mit einer wachsenden Anzahl von KI-Agenten, LLMs und KI-basierter Software gibt es für jedes Problem einen Anwendungsfall. Die Cloud ist mit ihrer immensen Rechenleistung und Skalierbarkeit ein Motor dieser Veränderung und Grundlage für die KI-Bereitstellung.

  • Clever skalieren auf Basis bestehender Strukturen

    Da Generative AI zunehmend Teil unseres Alltags wird, befinden wir uns in einer KI-Phase, die sich durch außerordentliche Fähigkeiten und enormen Konsum auszeichnet. Was anfangs auf einer theoretischen Ebene stattgefunden hat, ist inzwischen messbar - und zwar bis zur kleinsten Einheit. Aktuelle Untersuchungen von Mistral AI und Google deuten darauf hin, dass die Folgen einer einzigen Interaktion vernachlässigbar sind: Bruchteile eines Watts, einige Tropfen Wasser und ein Kohlenstoffausstoß, der etwa dem entspricht, was beim Streamen eines Videos unter einer Minute verbraucht wird.

  • Von Cloud-First zu Cloud-Smart

    Die zunehmende Vernetzung von IT- und OT-Systemen bedeutet für die Fertigungsindustrie neue Sicherheitsrisiken. Ein moderner Cloud-Smart-Ansatz verbindet Innovation mit effektiven Sicherheitslösungen, um diesen Herausforderungen gerecht zu werden. Die industrielle Digitalisierung stellt die Fertigungsindustrie heute vor neue Herausforderungen - insbesondere in puncto Sicherheit.

  • Technik statt Vertrauen

    Die andauernden Turbulenzen in den USA seit Amtsantritt von Donald Trump, die konsequente Kürzung von Mitteln für Datenschutz und die Kontrolle staatlicher Überwachungsprogramme verdeutlichen: Wer als Behörde oder Institution höchste Datensicherheit garantieren muss, kann nicht auf US-amerikanische Unternehmen oder deren europäische Töchter setzen.

  • Risiko von SaaS-zu-SaaS-Integrationen

    Ein SaaS-Sicherheitsalbtraum für IT-Manager in aller Welt wurde kürzlich wahr: Hacker nutzten legitime OAuth-Tokens aus der Drift-Chatbot-Integration von Salesloft mit Salesforce, um unbemerkt Kundendaten von der beliebten CRM-Plattform zu exfiltrieren. Der ausgeklügelte Angriff deckt einen kritischen toten Winkel auf, von dem die meisten Sicherheits-Teams nicht einmal wissen, dass sie von ihm betroffen sind.

  • Kostenfallen erkennen und vermeiden

    Remote Work, Cloud Computing und mobile Endgeräte haben die Arbeitswelt grundlegend verändert. Mitarbeiter erwarten heute, von überall aus auf ihre Anwendungen und Daten zugreifen zu können. Virtuelle Desktop-Lösungen machen diese Flexibilität möglich, indem sie Desktop-Umgebungen und Anwendungen über das Netzwerk eines Unternehmens bereitstellen. Doch der Markt für solche Lösungen ist komplex und vielfältig. IT-Entscheider stehen vor der Herausforderung, aus dem Angebot die passende Lösung zu identifizieren, die sowohl technische Anforderungen als auch wirtschaftliche Ziele erfüllt.

  • Übergang in die neue Systemlandschaft

    Der Umstieg auf SAP S/4HANA ist bei vielen Unternehmen bereits in vollem Gange oder steht unmittelbar bevor. Wer in diesem Zusammenhang seine Archivierungsstrategie überdenkt, kann wertvolle Zeit, Kosten und Aufwand sparen. Die Archivierungsexperten von kgs haben zehn zentrale Aspekte zusammengestellt, die dabei helfen, den Übergang in die neue Systemlandschaft effizient und zukunftssicher zu gestalten.

  • Die Zukunft braucht offene KI-Infrastrukturen

    KI ist mehr als ein ominöses Hinterzimmer-Experiment. Die Technologie ist eine treibende Kraft, wenn es um Produkte, Entscheidungen und Nutzererfahrungen über jegliche Wirtschaftsbereiche hinaus geht. Mittlerweile stellen Unternehmen jedoch die Inferenz in den Mittelpunkt ihrer KI-Implementierungen. Hier können die Modelle ihren eigentlichen Mehrwert unter Beweis stellen - unter anderem in Form von Antworten auf drängende Fragen, Vorhersagen und Content-Generierung. Der Anstieg des Inferenz-Bedarfs bringt jedoch eine entscheidende Herausforderung mit sich. Bei Inferenzen handelt es sich nämlich nicht um einzelne Workloads.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen