Sie sind hier: Startseite » Markt » Tipps und Hinweise

Mangelware: Komplexe Machine Learning-Anwendungen


Selbst IT-Fachleute wissen oft nicht, was unter Machine Learning zu verstehen ist
Acht Gründe, warum es maschinelles Lernen in Unternehmen schwer hat



Maschinelles Lernen (ML) hat deutliche Fortschritte gemacht. Der Streaming-Service Netflix nutzt diese Technik beispielsweise, um seinen Nutzern maßgeschneiderte TV-Angebote zu servieren, und Googles App "Arts & Culture" ist dank ML in der Lage, die Doppelgänger von Smartphone-Nutzern in weltbekannten Kunstwerken aufzuspüren. Doch wenn es um den Einsatz von Machine Learning in Unternehmen geht, sieht die Sachlage anders aus. Umfassende, komplexe Machine Learning-Applikationen sind im Unternehmensumfeld nach wie vor Mangelware. Die Application-Intelligence-Experten von AppDynamics nennen dafür acht Gründe.

1. Unklarheit, was maschinelles Lernen ist
Selbst IT-Fachleute wissen oft nicht, was unter Machine Learning zu verstehen ist. De facto heißt ML, dass mathematische Verfahren eingesetzt werden, um große Datenmengen nach Mustern zu durchsuchen. Die Algorithmen entfernen dazu störendes "Rauschen" (Noise) aus den Daten-Samples.

2. Nutzen ist nicht offenkundig
Die Stärke von ML-Algorithmen ist, dass sie sich ohne Zutun von Menschen an Systeme anpassen können, die sich verändern. Dabei sind sie in der Lage, zwischen erwarteten und anormalen Verhaltensmustern zu unterscheiden. Deshalb lässt sich maschinelles Lernen in vielen Bereichen einsetzen, etwa im Gesundheitswesen und in Sicherheitsapplikationen. Gleiches gilt für Anwendungen, die Daten klassifizieren oder Nutzern Empfehlungen geben, etwa welche Waren ihren Geschmack treffen könnten. Ein weiteres Einsatzfeld ist die Sprach- und Bilderkennung.

3. Den richtigen Einstieg finden
Unternehmen wissen oft nicht, wie sie Machine Learning implementieren sollen. Oft erfolgt das auf zwei Arten: Mitarbeiter beginnen eigenständig damit, ML für die Datenanalyse zu nutzen. Oder ein Unternehmen schafft eine Lösung an, in die ML-Algorithmen integriert sind, etwa eine Lösung für das Performance-Management von Anwendungen.

4. Daten aufbereiten
Einfach Daten zu sammeln und einen ML-Algorithmus "darüber zu jagen", funktioniert nicht. Vielmehr müssen die Daten zuvor aggregiert und um fehlende Informationsbestände ergänzt werden. Zudem ist es notwendig, "Datenmüll" zu entfernen und Informationen in die richtige Reihenfolge zu bringen.

5. Mangel an öffentlich verfügbaren, klassifizierten Daten
Erste Schritte in Richtung Machine Learning wären einfacher, würden genügend "gelabelte" Datensätze zur Verfügung stehen. Solche Informationen sind notwendig, um Machine-Learning- und Deep-Learning-Systeme zu trainieren. Leider sind solche Informationsbestände nur begrenzt verfügbar. Daher sind Unternehmen oft zu einem "Kaltstart" gezwungen, wenn sie ein ML-Projekt initiieren.

6. Domain Knowledge ist gefragt
Im Idealfall ist maschinelles Lernen die perfekte Kombination eines Algorithmus und einer Problemstellung. Das bedeutet jedoch, dass ein Machine-Learning-Fachmann "Domain Knowledge" benötigt. Das sind beispielsweise spezielle Kenntnisse über die Branche, in der ein Unternehmen aktiv ist, oder über eingesetzte Fertigungstechnologien. Auch Wissen über IT-Systeme und die Daten, die sie generieren, zählt dazu.

7. Datenspezialisten sind kein Allheilmittel
Die meisten Data Scientists sind Mathematiker. Daher verfügen sie nicht in jedem Fall über die Domain Knowledge, die für ihren Arbeitgeber relevant ist. Solche Spezialisten sollten daher mit Analysten und Domain-Experten aus dem Unternehmen zusammenarbeiten. Das erhöht jedoch die Kosten von Machine-Learning-Projekten.

8. Es fehlt eine gemeinsame "Sprache"
Bei Machine-Learning-Projekten in Unternehmen gibt es häufig keine Regeln, auf welche Weise Resultate gewonnen werden sollen. Deshalb entstehen "Silos", weil Mitarbeiter unterschiedliche Daten-Samples und Definitionen der Eingabewerte verwenden. Das wiederum hat zur Folge, dass ML-Analysen höchst unterschiedliche Ergebnisse produzieren. Solche Diskrepanzen können Zweifel am Nutzen von ML schüren.

Fazit: Keine Angst vor Machine Learning
Unternehmen, die Machine Learning einsetzen wollen, müssen somit etliche Klippen umschiffen. Dennoch sollten sie sich mit maschinellem Lernen, Deep Learning und künstlicher Intelligenz (KI) beschäftigen. Denn diese Technologien spielen bereits heute eine wichtige Rolle in Unternehmensanwendungen – und sie werden drastisch an Bedeutung gewinnen. Eine zögerliche Haltung ist somit keine gute Strategie. Denn wer den Anschluss verliert, wird dies teuer bezahlen: durch eine sinkende Wettbewerbsfähigkeit.
(AppDynamics: ra)

eingetragen: 19.06.18
Newsletterlauf: 03.07.18

AppDynamics: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Wie sich Teamarbeit im KI-Zeitalter verändert

    Liefertermine wackeln, Teams arbeiten unter Dauerlast, Know-how verschwindet in der Rente: In vielen Industrieunternehmen gehört der Ausnahmezustand zum Betriebsalltag. Gleichzeitig soll die Zusammenarbeit in Produktion, Qualitätskontrolle und Wartung immer schneller, präziser und vernetzter werden. Wie das KI-gestützt gelingen kann, zeigt der Softwarehersteller Augmentir an sechs konkreten Praxisbeispielen.

  • Vom Workaround zum Schatten-Account

    Um Aufgaben im Arbeitsalltag schneller und effektiver zu erfüllen, ist die Suche nach Abkürzungen Gang und Gebe. In Kombination mit dem technologischen Fortschritt erreicht die Effizienz menschlicher Arbeit so immer neue Höhen und das bringt Unternehmen unwissentlich in eine Zwickmühle: Die zwischen Sicherheit und Produktivität. Wenn ein Mitarbeiter einen Weg findet, seine Arbeit schneller oder besser zu erledigen, die Bearbeitung von Zugriffsanfragen durch die IT-Abteilung aber zu lange dauert oder zu kompliziert ist, dann finden Mitarbeiter oftmals "kreative" Lösungen, um trotzdem weiterarbeiten zu können. Diese "Workarounds" entstehen selten aus böser Absicht. Allerdings stellen sie gravierende Sicherheitslücken dar, denen sich viele Beschäftigte und Führungskräfte nicht bewusst sind.

  • KI in der Cloud sicher nutzen

    Keine Technologie hat die menschliche Arbeit so schnell und weitreichend verändert wie Künstliche Intelligenz. Dabei gibt es bei der Integration in Unternehmensprozesse derzeit keine Tür, die man KI-basierter Technologie nicht aufhält. Mit einer wachsenden Anzahl von KI-Agenten, LLMs und KI-basierter Software gibt es für jedes Problem einen Anwendungsfall. Die Cloud ist mit ihrer immensen Rechenleistung und Skalierbarkeit ein Motor dieser Veränderung und Grundlage für die KI-Bereitstellung.

  • Clever skalieren auf Basis bestehender Strukturen

    Da Generative AI zunehmend Teil unseres Alltags wird, befinden wir uns in einer KI-Phase, die sich durch außerordentliche Fähigkeiten und enormen Konsum auszeichnet. Was anfangs auf einer theoretischen Ebene stattgefunden hat, ist inzwischen messbar - und zwar bis zur kleinsten Einheit. Aktuelle Untersuchungen von Mistral AI und Google deuten darauf hin, dass die Folgen einer einzigen Interaktion vernachlässigbar sind: Bruchteile eines Watts, einige Tropfen Wasser und ein Kohlenstoffausstoß, der etwa dem entspricht, was beim Streamen eines Videos unter einer Minute verbraucht wird.

  • Von Cloud-First zu Cloud-Smart

    Die zunehmende Vernetzung von IT- und OT-Systemen bedeutet für die Fertigungsindustrie neue Sicherheitsrisiken. Ein moderner Cloud-Smart-Ansatz verbindet Innovation mit effektiven Sicherheitslösungen, um diesen Herausforderungen gerecht zu werden. Die industrielle Digitalisierung stellt die Fertigungsindustrie heute vor neue Herausforderungen - insbesondere in puncto Sicherheit.

  • Technik statt Vertrauen

    Die andauernden Turbulenzen in den USA seit Amtsantritt von Donald Trump, die konsequente Kürzung von Mitteln für Datenschutz und die Kontrolle staatlicher Überwachungsprogramme verdeutlichen: Wer als Behörde oder Institution höchste Datensicherheit garantieren muss, kann nicht auf US-amerikanische Unternehmen oder deren europäische Töchter setzen.

  • Risiko von SaaS-zu-SaaS-Integrationen

    Ein SaaS-Sicherheitsalbtraum für IT-Manager in aller Welt wurde kürzlich wahr: Hacker nutzten legitime OAuth-Tokens aus der Drift-Chatbot-Integration von Salesloft mit Salesforce, um unbemerkt Kundendaten von der beliebten CRM-Plattform zu exfiltrieren. Der ausgeklügelte Angriff deckt einen kritischen toten Winkel auf, von dem die meisten Sicherheits-Teams nicht einmal wissen, dass sie von ihm betroffen sind.

  • Kostenfallen erkennen und vermeiden

    Remote Work, Cloud Computing und mobile Endgeräte haben die Arbeitswelt grundlegend verändert. Mitarbeiter erwarten heute, von überall aus auf ihre Anwendungen und Daten zugreifen zu können. Virtuelle Desktop-Lösungen machen diese Flexibilität möglich, indem sie Desktop-Umgebungen und Anwendungen über das Netzwerk eines Unternehmens bereitstellen. Doch der Markt für solche Lösungen ist komplex und vielfältig. IT-Entscheider stehen vor der Herausforderung, aus dem Angebot die passende Lösung zu identifizieren, die sowohl technische Anforderungen als auch wirtschaftliche Ziele erfüllt.

  • Übergang in die neue Systemlandschaft

    Der Umstieg auf SAP S/4HANA ist bei vielen Unternehmen bereits in vollem Gange oder steht unmittelbar bevor. Wer in diesem Zusammenhang seine Archivierungsstrategie überdenkt, kann wertvolle Zeit, Kosten und Aufwand sparen. Die Archivierungsexperten von kgs haben zehn zentrale Aspekte zusammengestellt, die dabei helfen, den Übergang in die neue Systemlandschaft effizient und zukunftssicher zu gestalten.

  • Die Zukunft braucht offene KI-Infrastrukturen

    KI ist mehr als ein ominöses Hinterzimmer-Experiment. Die Technologie ist eine treibende Kraft, wenn es um Produkte, Entscheidungen und Nutzererfahrungen über jegliche Wirtschaftsbereiche hinaus geht. Mittlerweile stellen Unternehmen jedoch die Inferenz in den Mittelpunkt ihrer KI-Implementierungen. Hier können die Modelle ihren eigentlichen Mehrwert unter Beweis stellen - unter anderem in Form von Antworten auf drängende Fragen, Vorhersagen und Content-Generierung. Der Anstieg des Inferenz-Bedarfs bringt jedoch eine entscheidende Herausforderung mit sich. Bei Inferenzen handelt es sich nämlich nicht um einzelne Workloads.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen